OTM SPECTRUM %

pen Transaction Management -
Strategies for multi-platform environments in the 1990s

“In our analysis two or three things have to
change. The first is that we have to decide
that we are serious about distributed pro-
cessing. In my opinion, the approach that
most of the database vendors are taking
today — to the issue of distributed data-

base — is revealing. It is as if they are try-
ing to wish distributed processing away.”

David Vaskevitch
Director of Enterprise Computing
Microsoft Corporation

Volume 8 Report 1 February 1994

Microsoft’s vision for the
transaction environment

Transactional messaging vs.
transaction processing

Requirements for today’s database
server architectures — part 1

Porting to CICS/6000
and Oracle - part 2

Objects and transactions; a case
study at Brooklyn Union Gas

Workflow processing goes mainstream

OTM

SPECTRUM

ces<ing. mes=aging and queuing and database are
needed. But they are needed in ways not currently
delivered. He sves this as Microsoft's opportunity.

For a wmpari=on, see page 29 where Keith
Hosper= of Informix describes how database vendors
are assuming a transaction role. That Informix is
climbing the vransaction ladder is clear. He almost
delivers a knockout blow when he remarks how little
competitive advantage Informix and its partners have
obtained by adding transaction monitor links.

At the same time he confirms that growing up
(from PCs and workstations and LANs) — rather
than moving off rand down) from hosts — is where
the action is. [t i< no accident that Informix has 3000+
vendors =elling applications on its databases, with
over 300.000 licences =old. This may be a small per-
centage of 500M but it is an order of magnitude
larger than all mainframe transaction processors
ever sold. And this iz from only one vendor; think
about adding Orvacle. SybaseMicrosoft, Borland, ...

Other threats

The Microsolt and Informix views serve notice of
intentions= to force change. Elsewhere in this Report
two different threats are discussed. namely:

® time independence

& nuan=actional 00.

Time independence is hardly novel. either techno-
logicallv or tor management. Nevertheless much of
the carly 19402 computing model seems to depend
on exphe:t connections — that updates are commit-
ted adl at onee or not at all. In centralized =ystems this
w, < achievable, In distributed svstems. using facili-
tes like iwe-phase commit. this becomes much
harder to-doliver, Some even claim it is impossible.

Ume nswer will be messaging and queuing. It

abies rone independence tor talmost real time), if
thit 1= achat is needed - Add this capability to OO and
ansaction ~vstems and flexibility can be brought
wodpabuted sustems, :

Atthotizh there is much talk is about OO and
fran=actios~ paze 1 and 47 the probability is that
me~2azing and quening. or transactional messaging,
will steal the limelicht in the late 1990s (page 16).
Phe reason i that it is applicable in most distributed
enterpri=es Who will exploit this remains to be seen.

Management conclusion
When looking at the computing industry for 1994
some trends= emerge:
B uaditional OLTP is being marginalized on the
manirame
B the application developers’ focus is moving to
~clecting the right database
® the need for time independent processing in the
di~tributed enterprise will steadily assume greater
mmportance.

Change ix needed. It is coming. But not from
those with traditional IS skills or products. That is
what 1994 curvently looks likely to bring.

OTM SPECTRUM FEBRUARY 1994

“ Contents of 1993 Reports page 58

CONTENTS

Volume 8 Report 1, February 1994

Databases move to deliver
transaction processing page 2

Microsoft's vision for the !
transaction environment
An interview with David Vaskevitch ~ page 4

Transactional messaging vs.
transaction processing page 16

Requirements for today's
database server
architectures — part|1 page 22

Informed by Informix
An interview with Keith Hospers ~ page 29

Porting to C1CS/6000 and
Oracle — part 2 page 36

Object Transaction
Management page 41

Objects and transactions;
a case study at Brooklyn
Union Gas page 47

Workflow processing
goes mainstream page 53

MANAGEMENT PERSPECTIVE

3

OTM

SPECTRUM

Requirements for today's

database server architectures

— Part |

Management introduction

Current business and technology trends are driving
the database industry toward a certain class of archi-
tectural features. Business organizations and com-
puting technologies have traditionally fostered an
artificial division between OLTP. batch processing
and decision support. Typically Information Systems
(IS) departments responded to customer service and
business management needs by decomposing busi-
ness requests until they could be processed in an
OLTP environment, a batch processing environment
or a decision support environment.

Today’s businesses are increasingly information
and service oriented. Thev need the ability to unify
these classes of data processing. creating an inte-
grated class of data processing.

This suddenly popular class of data processing is
called on-line complex processing (OLCP:. OLCP-
capable platforms can provide businesses with the
ability to:

B answer customer requests
B manage the business directly
B provide this in a single. integrated environment.

The single most critical factor in an OLCP plat-
form is the database server architecture. Part 1 (of
two analyses) describes the architectural features
which a database server (and architecture must pos-
sess in order to meet today’s trends and opportuni-
ties.

Key developments

At the same time that business has begun to recog-
nize the importance of OLCP, technology has been
making rapid advances. On the one hand new hard-
ware technologies have made lower cost. higher

. powered computers readily available plus network
. speeds have improved and memory costs cary on
i decreasing. On the other hand. while disk capacities
¢ have continued to increase. disk speeds have not
_ kept pace.

Yet by far the most important change in computer

" architectures has been the move toward using multi-

ple processors to increase computing power.

 Although platforms todav are dominantly uniproces-
¢ sor. three hardware architectures are becoming

increasingly important:

j B Syvmmetric MultiProcessing (SMP) — the most

common form of tightly coupled multiprocessor sys-

22 REQUIREMENTS FOR TODAY'S DATABASE SERVER ARCHITECTURES

tems; that is. systems which share main memoryv ser-
vices and, usually. dizk storage

B loosely coupled multiprocessor systems — svs-
tems which may share disk storage but have sepa-
rate main memory services such as are found in
clusters

8 Massively Parallel Processing svstems (MPPy —
systems which combine hundreds or even thousands
of CPUs.

SMP as the mainstream
Although all three of these svstems have had some
success — and can he expected to become increas-
ingly important — SMP svstems represent the main-
stream in the near future. The main reason for this
move toward SMP is low-cost scalability.

Various software trends are now beginning to
take advantage of SMP capabilities:
&8 platform downsizing has become commonplace
B communications standards have enabled a wide
variety of distributed computing for example.
client server computing takes direct advantage of
the ability to interconnect systems and divide the
work load)
B independent scaling of the hardware (without
adding to the administrative burden or requiring
rewriting of applications: has been found to be key to
the support of both client and server processes.

All of these are well supported by SMP svstems.

Yet. for all the benefitz available now from these
changes in hardware. software (especially operating
svstems and DBMSs) must be wiitten to take advan-
tage of the real power of SMP. They must not limit
the ability to use uniprocessor svstems today or to
migrate to loosely coupled. uncoupled or MPP svs-
tems tomorrow. When used efficiently. SMP systems
can provide scalable. OLCP-capable platforms at rela-
tively low-cost. ’

Key requirements for database server architectures
Modern database server architectures are driven by
four key requirements:

B scalability

B performance

All rights reserved; reproduction prohibited

without prior written permission of the Publisher
© 1994 Spectrum Reports Limited

OTM SPECTRUM FEBRUARY 1994

OTM

SPECTRUM

s OLCP
B ovailability

Each. along with the keyv factors which differenti-
ate database server architectures. is discussed
below.

Scalability

Scalability is the property of a system which permits
predictable support of additional users. higher per-
formance. greater throughput. ete:

B by adding computing resources

® without changing the application or administra-
tive practices.

There are two ways of scaling a database server:
8 horizontal
B vertical.

Honizontal scaling can be achieved when multiple
servers interoperate transparently and share the
workload. This method of scaling will become
steadily more popular as loosely coupled systems
and distributed databases are better supported. The
downside is that it usually requires additional admin-
I=trative support.

Vertical =caling. in which a single server is scaled
up. can be achieved when computing resources —
such as faster or additional CPUs — can be added to
a platform to improve response time and throughput.
Database =erver support for vertical scaling should
not require the addition of extra software modules
because this increases administration complexity
and decreases predictability.

Whether the horizontal or vertical scaling is used.
its effectivenes= depends on how well the database
server software uses the available resources.

Thiz analvsiz focuses on vertical scaling because
it is the method which is seeing the most rapid
arowth today.

Scalability iz an important goal today for two pri-
MATY TeAS0NS:

B with business requirements changing so rapidly,
it 1= no longer possible to perform the kind of rigid
and time-consuming long-term capacity planning that
was once promoted in MIS: instead an incremental
approach is required

& with technology changing equally rapidly, new
capabilities — and lower hardware costs — are
alway= appearing.

Without an incremental approach. businesses
cannot afford to take advantage of new technology
without depreciating older technology.

Scalability at every level is crucial. In today’s busi-
ness environment. this often means that older busi-
nesses cannot compete with newer ones because of
outdated capital investments. These facts require
that both the hardware and the software, and espe-
cially the RDBAIS. be scalable.

The key enabling factors applicable to scalability
are:

8 multiprocessor support
8 architectural scalability.

OTM SPECTRUM FEBRUARY 1994

Multiprocessor support
SMP systems are used increasingly to achieve verti-
cal scaling because they permit the addition of CPUs
without changing the entire platform. While MPP
can also be used to achieve vertical scaling. this
approach is currently being used only in specialized
applications.

Two key issues for an SMP database server archi-
tecture are extensibility and transparency.

Extensibility demands that the database server archi-

tecture not be spe-
cialized to any

particular number 3 ™
of CPUs; it should = v !‘ih G 2 ’i
be equally capable % & %’é a ﬂ

of supporting one

o i s e Pepemente

B without reinstal-

e, approach,

changes to off-line

:;)Ztﬁeilration para- % ig 5 E ﬁ é 3 § €; = 5

8 without addi-

oo

we, o .t afford o
aavan-

Such an archi- =
tecture will be *
equally useful and
efficient if the plat-
form consists of
one - CPU ta

m W
Gt %ﬁ““
(%) 6’53
)
m%
o

9

3, Mo,
=
S

¢

even many proces-
sors (MPP). The
user should not
have to purchase
separate products
specialized to a
type of platform.

In contrast
transparency
demands that the
database server
architecture be
able to hide
changes on the
platform architecture from applications. In particular,

uniprocessor:, = g
: b g@ P v ¥ o
multiple proces- T Am PR MRIRE S 5
B % .,ah_éygg S
sors (SMP) or it o B &
-

a uniprocessor or SMP system might use shared ;
memory for communication, while a loosely coupled :

svstem might use messaging.

Applications should not need to be changed if the
platform changes or if the communication mecha-
nism changes. Data manipulation and the database
API should remain the same.

Efficient support for multiprocessing requires
that the database server be capable of scheduling

REQUIREMENTS FOR TODAY'S DATABASE SERVER ARCHITECTURES

N‘

23

sewey tc
malie etfi-

cient

miitivoiunie

OTM

SPECTRUM

tasks to use the available resources. This can be
achieved by scheduling requests sequentially or by
dividing requests into subtasks which can be per-
formed in parallel.

Properly implemented. the latter approach is the
most efficient and the benefits will not depend on
application type. The granularity at which load bal-
ancing and task scheduling occurs has a strong
impact on efficiency:

8 if the granularity is too high (for example, per
SQL statement . the collection of CPU and memory
resources will not
be shared effi-
ciently (CPU
resources may not
be used while wait-
ing for disk YO

B \ith lower
granularity, shar-
ing of resources
can occur within a
single request and
— even more effi-
ciently — for mul-
tiple concurrent
requests.

Architectural
scalability
Regardless of the
degree of portabil-
ity or support for
standards and par-

use of

allelism, a data-
E . base server
ta .2 g “E‘z g & ﬁ d architecture that

K’Q‘}V!‘ &

tabile

&'u'

tioning.

has built-in limita-
tions will not scale.
Limitations on:

B table sizes

B database sizes
(in bytes as well as
number of tables)
B log sizes

B number of con-

¢ parti-

current connections

8 memory (buffer: sizes

B pumbers of users

B etc.

are just as constraining as a DBMS that will not sup-
port multiple platform configurations.

Factors which limit query complexity — espe-
cially those which control the depth of recursion.
such as stack size — should be managed dynami-
cally and not require system shutdown. Replacing
server hardware with a more powerful configuration
will have no effect if these limits are internal to the
DBMS.

Common architectural bottlenecks also appear in
the form of the inability to dynamically tune the data-

24 REQUIREMENTS FOR TODAY'S DATABASE SERVER ARCHITECTURES

base server. The ability to tune — the amount of
memory. the number of CPUs. the number of con-
current threads of execution iwhether actual
threads. processes. or virtual processe:! and the
number of not-necessarily-disjoint table partitions
icalled fragments by C. J. Date and their disk distri-
bution — without having to shut down and restarn
the database server should all make it possible to
respond to changing application requirements.

Ideally. each of these will change dynamically
within user set limits. Support for subqueries and
cascading triggers are obvious examples of the need
for recursion.

Performance

Two of the main methads of achieving hizher perfor-
mance — given today = hardware and operating svs
tem software — are:

® support for paralicli=m
rithms

B multi-threading.

and parallelized alan-

Parallelism and parallelized algorithms

One way of achieving higher performance in a data-
base server is through parallelization of algorithims,
There are three types of parallelization which need to
be addressed by a modern database server architec-
ture:

B parallel disk I'O

B paralle] utilities

B parallel query processing.

Parallel disk 1’O enables the database server to
make efficient use of multi-volume tables and table
partitioning. Support for physical table partitioning is
particularly important for parallel disk 1'O. It greatly
improves efficiency and resource management when
properly implemented.

Parallel utility operation rsorting. index building.
load. backup. and recovery: all involve parallel pro-
cessing as well as parallel disk I'O but tyvpicallv have
only a few component operations that can he paral-
lelized.

By contrast with parallel disk IO and parallel util-
ities, parallel query processing is much more com-
plex. Processing a query normally involves
invocation of a number of atomic database opera-
tions.

The composition and sequence of these opera-
tions depends on the specific query and the execu-
tion plan selected by the query optimizer. Ordinarily-.
database operations are performed in a strict
sequence, with the output of one operation feeding
the input of the next.

Essentially. parallelization is a divide and conquer
approach. like assigning multiple workers to a single
task by dividing the work and thereby completing
the task sooner.

For a database server to support parallel querv
processing. vendors must select atomic datahase
operations which can:

OTM SPECTRUM FEBRUARY 1994

OTN

SPECTRUM

B be revdicated ana then can process different por-
tions of *he data eoncarently
B o one the resalts as theush a single thread of
exectition had pererined the operation.
Mecting this goas mequares that queries be decom-
po=cd aid proces<ed adependent of the communica-
’ b

Pons Qi

o ecesstiated byoany particular
hardwire conticurion, Creating multiple copies of
ten which can run in par-

a particular databise oprat
i

allel i called horizontal paralielism.

I euch o the database operations i= desizmed =0

that 1t 1= demand drven a data Qow approach - the
datebase server can giso achieve parallelism by run-
ning different databicse operations concurventiv. For
example. a datinase cperation which selects records
bazed on the vatue of atield <hould run concurrently
with a duatabese overation which accesses records
trom disk and neea oot wait unul all requested
cecords have been read.

simitetos selected reeords can be fed to a =ort
senUne tor e partitioning according to the sort
kev while both the sedection operation and the access
prerition continue. It addition to independence of
e anpienientetoon rom the degree of paralleli=m. o
demand deiver aesion alsc permits transparent

Faorportion of e weally paradiel algornthms

conders to take adt antage off

rescitech o improve pertor-

s and eedeal paradieism

Cosnchput and decreases vesponse

val sequential processing
e U mprovemient 1= speeded up.

Multi-threading

Tre method o buos s

auitiple user requests that

hos the Ioest overiead =< tue mulu-threading ras
fi~teZusned Bom siondated mulu-threading:. A
theesdd s it G contest management undey the
cantval of 4 sinsie process.and can be:

& cither implerented within the process (the data-
hase servers

B o1 vid operating svstent services.

An operaung =vstem-level process context switch
aderably more costiy in svstem terms: than a
thread-evel conteat switeh, The =ame i uue for
provess creation and destruction compared to thread
creation and destiruction. :

In prineiple threads can also perform concurrent
ta<k= by cloning themselves. creating subthreads
much like =ubprocesses. Because the operating svs-
tem need not create. <chedule or terminate multiple
proces==es. overhead for a multi-threaded database
=erver iz lower than for other architectures.

Thus a true mulu-threaded architecture provides
a higher degree of resource sharing — and tends to
make performance more stable with respect to the
numbers of users enabled — than do shared multi-

st

OTM SPECTRUM FEBRUARY 1994

process architectures. In addition. multi-threading
can also provide a higher degree of module indepen-
dence since the execution of logical operations can
be event-based rather than control flow-based. Thix
means that zerver code can be expected to be more
stable when new functionality is added.

By completely managing all the resources needed
by the RDBMS — including buffer space. disk =pace.
and locking — a mutisthreaded database =crver
architecture is exzentially a dedicated operating svs-
tem which schedules thread execution. The sched-
uler can be either preemptive or non-preemptive:

B in a non-preemptive scheduler threads execute
until they signal the scheduler that they are willing to
aive up the proce=sor the zcheduler frequently uses
a round-robin algorithm which permits each thread
to run until it blocks or until a period of time known
a= a time =lice has elapsed; such scheduling i= effi-
cient for a dedicated use database server. since the
number of types of threads which a process need
execute are relatively few. can be tightly controlled
and are highly predictable

8 inoa preemptive scheduler. threads can be inter-
rupted by the scheduler based on. for example. the
need for a thread with higher priority to begin exe-
cuting: =uch a scheduler is efficient for database
=eivers which must share resources with non-data-
base applications.

On-Line Complex Processing

The evolution of svstems toward OLCP is character-
ized by hvbid environments in which OLTP. DSS,
and batch proces=ing share common data processing
resources and manipulate the same data (also see
Figure . However it remains true that resource
management. tuning and administration of hybrid
envirgnments i= mherently more difficult than when
a platform is dedicated to a particular type of process-
ing.

In addition the different types of application sup-
ported often require conflieting svstem configura-
tions. When <uccessfully implemented as a hybrid
environment. new applications themselves become
hybrid. Over time queries and transactions in such
environments change character and become more
complex. The application design begins to address
business concerns directly, and to reflect data pro-
cessing solutions less,

DBMS vendors often architect versions of their
products for different classes of application. For
example. a database server which is dedicated to
OLTP can depend on several conditions:

B transactions are typically of short duration

B transactions generally do not interfere with each
other

statements generally affect only a few rows

® only a few tables have many rows or are very
volatile.

DBMS vendors that focus on OLTP take advan-
tage of these facts by using physical methods to

REQUIREMENTS FOR TODAY'S DATABASE SERVER ARCHITECTURES

25

Managin
memeory
3 imgym

BT B '1"@;

26 REQUIREMENTS FOR TODAY'S DATA

b

OTM

SPECTRUM

improve performance or by requiring applications to
enforce noninterference of transactions. The query
optimizer component of the DBMS need not be espe-
cially powerful nor need the data access and process-
ing methods be capable of efficient access to and
manipulation of larger amounts of data.
Nevertheless. within a hyvbrid environment. such
svstems suffer severe performance penalties. They
often require unac-
ceptable levels of
database and appli-

cation mainte-
nance.
From thisit can
'* i« - swiftlv. be seen
é-.e ﬁ %3 that key factors

mvolved in a data-
hase =erver archi-
tecture capable of
supporting OLCP
must include:

B optimization

B cfficient

mam
mmm

% resource manage-
‘ ment
- B paraliel guery
Ll < s progessing
8 g‘i BRSINE.
Optimization

The capabtlities of

a database server

query optimizer

F s B determine. to a

: large degrec. the

ahility " of the

RDBMS to per-

form efficient =et

processing In par-
ticular the ahility
of the guen opti-

mi‘/m‘ to u=e an

appropriiie index

for restricting the
rows selected. or

: 1o munage queries

s which reference

many tables. 13

: . important.

b BT Optimizers
<hould not be sen-
sitive to SQL sm-
tax. They =hould

be sensitive to data statisties and data value distibu-

tions. In this way they can evaluate the expected cost
of the possible query execution plun= and then select
the one with the lowest cost.

When set processing queries are processed. the
various portions of the processing can be interleaved
or scheduled to improve concurrency and resource
usage.

e E11

ASE SERVER ARCHITECTURES

In order to do this properly an RDBMS must have
a scheduler which:
M cooperates with the optimizer
B takes into account the transaction isolation levels
of all transactions which are executing concurrently.

Resource management

Efficient resource management consists of address-
Ing two issues:

B transparent support for appropriate resources

B efficient use of particular resources.

Transparent resource support is crucial. For
example. in developing a client server application.
the designer cannot rand should not have to: make
assumptions about how the client and server commu-
nicate. Whether a network or shared memaon ser-
vices are used should not affect the design.
should the design constrain their use.

When a relational application resides on the same
physical platform as the databuse engine. the applica-
tion and the database engine can =imchronize state
information efficiently through <hared memorny. This
i= particularly important when managing Jocks and
when buffering result zet= for a cursor-driven inter-
face.

Among the most impomtant resources Is memor.
Managing memory consumption in a database sever

nor

= as important as the process management overhead
that 12 addres<ed by o multi-threaded architecture.
RDBMS applications use memony to:

B maintain the state of g connection

B cache requests and results.

Somie servers aliocate and manage memory sepi-
Thiz means that data or index
pages in memory for one user are not accessible to
another u=er unti! they have been reread from disk.

Other
ory for mantaining process context. This contrasts
with multi-threading which uses minimal amount~ of
memory for context management.

Without efficient management of shared memon.
a database =erver architecture cannot address the
=imultaneou= necds of OLTP. DSS, and batch pro-
cessing — Jet alone complex queries and transac-
tions=. For example. if a task blocks rwaiting for some
resource such as LO it is important that 1t does not
continue o hold resources. Instead. the vehicle of
execution ‘a thread or a process: should move on to
execute ome unblocked. executable task.

The portion of & ta<k that must complete before it
i willing ta vield resources is therefore highly mpaor-
tant. If'it 1wt the level of & SQLL statement. resources
will be wasted whenever the task blocks. In an OLCP
environmient. an entire SQL statement in a batch
process might prevent eritical OLTP applications
from meeting critical re=ponse lume requirements.
This is unacceptable.

rately for cach user

=rvers consume undue amounts of mem-

Parallel query processing
Parallel query processing offers a =olution o the

OTh SPECTRUM FEBRUARY 1994

OTM

SPECTRUM

problem of poor pertormance on complex queries or
against large. volatile databases. By accessing and
proces=ing portions of the affected data in parallel.
parallel query procesaing can greatly improve perfor-
mance of DSS :ind batch processing.

Such improvements in performance make it possi-
ble to include complex queries in read write transac-
tions without =acrificing data integiity or transaction
izolation. With adequate response time. DSS queries
that would not he possible in a traditional system:

B become possible
8 need not compete destructively with OLTP appli-
cations.

On-line administration

[deally. admini=tration utilities support continuous
operation. The svstem should reduce or even elimi-
nate both planned and unplanned outages.

In practice. and too often. RDBMS: must be taken
oft-line in order to run ~ome utility.

To provide high availability, utilities — such as
database loading. backup. recovery. integrity valida-
tion, index reorzanization, ete. — =should all be exe-
cutable on-line.

For example. if a failure occurs during <uch main-
tenance operations. the utility should not have to be
re~turted from the beqinning of the operation. The
utility. mivht pertorm pertodic checkpoints or even
full journaling <o that other utilities can continue pro-
ces=ing from the point of tailure,

Other capabilities ~uch as on-line and automatic
archival of il log files. automatic restot no opera-
tor anternvention. and controllable sv<tem restart
tmes are al=o important. By mimimizing the opera-
tion= requirmg the RDBMS to be taken offHine, avail-
ability is improved,

Fyen soo wministration tasks — including moni-
forme and esowrce managenient — frequently inter-
e with svaghabiline, Llecdiv, atdlity operations on
rge tabhles — 2uch as backup. load. index creation,
and ndes reorzarization — <hould not require that
o lata unit — such a= o tables portion of a table. or
the database — be made unasailable for either read
OF WY QUCe=s,

[t iz necessarn that the data unit be taken off-
fne, that taet should not interfere with aceess to
other data units.

Similarly. physical database allocation and reovga-
nization. space management. log archiving. and sys-
tem restart <hould have a minimal impact on
applications.

The database server should also have flexible
monitoring capabilities which permit users to build
custom utilittes. Mainframe administravon function-
ality — 2uch as unattended and schedualed utility
operations — i Just as essential for a database server
architecture.

Equally the ability to add additional tape drives as
neces=ary and support for parallel utilities ‘backup.
restore. load. ete.r are essential if a database server

OTM SPECTRUM FEBRUARY 1994

architecture is to satisfv to the high avalability and
performance requirements of OLCP.

Robustness

Robustne== should reduce the importance of'a partic-
war failure and recover from it transparently. The
RDBMS should provide both read and write access
to data regardless of the circumstances. including
hardware system ov component failure.

Several different facets of robustness need to be
incorporated in a database server architecture,
including:

B redundancy
® replication.

Svstems which provide such high availability are
said to be fault tolerant. Fault tolerant systems often
rely on various forms of redundancy. Two of the most
mportant are:

B svstem hardware redundancy
8 conurolled data redundancy.

Svstem hardware redundancy may involve com-
pletely redundant hardware platforms. standby
processors. dual-ported disk drives and the like. A
common form iz hardware mirroring in which one
di=k drive is designated as a copy of another and pro-
tects acainst media failures.

Svstem hardware redundaney — although impor-
tant for fault wlerance — is not integrated with the
requirements of a database server. It is unresponsive
to tran=action boundaries. atomic read’writes, and
venerally the DBMS cannot take advantage of this
redundancy to improve performance.

Conuralled data redundancy oceurs in two forms:
B oftware minroring
B replication.

Software mirroring — also called duplexing or
multiplexing — can <imultaneously:

B protect acainst hardware failures
B be used o optimize performance.

It is the process by which the DBMS duplexes a
unit of data :table =pace. dbspace, chunk. or logical
device . usuaily un a different physical device. In par-
ticular. the copy iz defined as the mirror and any
writes are transparently written to the mirror. Read
operations can be distributed between the primary
device and it= miror, leading to improvement in per-
formance a= a side effect of mirroring. (Of course,
mirtoring may be of little value if the copies are
located on the same physical device.

In the event that a device is corrupted — for
example by media failure — the damaged copy
should automatically:

B e taken logically off-line
B have all reads and wiites directed to the remain-
ing undamaged copy.

The key is that no interruption should be per-
ceived by the user when this occurs. Once the dam-
aged device iz repaired or replaced, it can be brought
back into synchronization with the undamaged copy
by a process known as on-line remirroring.

REQUIREMENTS FOR TODAY'S DATABASE SERVER ARCHITECTURES

|
|
|

27

- OTM

SPECTRUM

Replication is similar to mirroring — except that
the copy may be remotely located and need not be
ssmichronously updated. It may even copy an entire
database. When used to copy an entire databasze. its
purpose is usually to create a ‘warm standby’
However, some implementations= add another benefit
— they make the standby copy available for read-
only access.

Replication can provide significant benefits to
hybrid environments. For example it can permit
DSS, report generation and other read-ouly batch
applications to have access to data on « standby sys-
tem while OLTP application~ update the primary svs-
tem.

Management conclusion

This analysis examines kev requirements for a mod-
en database server architecture. These require-
ments help identifv the kev features which a tiruly
OLCP database server architecture must support.
Thev can be summarized as:

B multi-threading — for performance. vesource
usage, and scalability via support of multiprocessing
B parallelism — for scalability. performance. and

resource usage (efficient extensibiliny aero== hard-
ware architectures:

B optimization — for higher performance and sup-
port of more complex queries and tranzuctions

28 REQUIREMENTS FGR TODAY'S DATABASE SERVER ARCHITECTURES

B controlled data redundancy — for higher avail-
ability and improved performance
B svstem redundancy — for higher availability of
the entire business svstem through fault tolerance
B on-line administration — for higher availability
8 OLCP support — for efficient suppurt of hyhrid
environments with concurrent OLTP. DSS. and
batch applications

As users recognize the importance of supporting
either a mixed apphcatinn environment from a sinzle
database =erver or more complex queries the two
predominant characteristics of OLCP . 1t 12 probabie
that the underlving dutabuse server wrchitecture wii!
become the doninant factor in product selcetion,

Thisis Part Toftico wiaivses the second
the May 1994 edition: of OTN Spe
about database server archiz res 1
e how the necessam fiattores
major database sercer pridiers:
B (e INFORMIN (1 Live Dyviaiiic Sord
B Oracle 7

B Svhases Sustior, 100

slapearin
vum Repeonts
il o .

RIS = L P

are gy

Bith woere writtans by Dacid M Gore s o
Alternative TociindloZios Borddor Crocr A siiun
Both are draur frons An Eviduads o of Thye

Database Server Architectires, pedisi e
Altersiarive Tecin vinzies,

QOTN. SPECTRUM FEBRUARY 1994

|

Ullvi

SPECTRUM

Replication is similar to mirroring — except that
the copy may be remotelv located and need not be
synchronously updated. It may even copy an entire
database. When used to copy an entire database. its
purpose is usually to create a ‘warm standby’.
However, some implementations add another benefit
— they make the standby copy available for read-
only access.

Replication can provide significant benefits to
hybrid environments. For example it can permit
DSS, report generation and other read-only batch
applications to have access to data on a standhy svs-
tem while OLTP applications update the primary svs-
tem.

Management conclusion

Thigs analvsis examines key requirements for 4 mod-
ermn database server architecture. These require-
ments help identifv the key features which a truly
OLCP database server architecture must support.
They can be summarized a=:

® nmulti-threading — for performance. resource
usage. and scalability via support of multiprocessing
B parallelism — for scalability. performance. and
resource usage (efficient extensibility across hard-
ware architectures:

B optimization — for higher performance and =up-
port of more complex queries and transactions

= B i ﬂi—;m

B controlled data redundancy — for higher avail-
ability and improved performance
B svstem redundancy — for higher availabiliny o

the entire busines= svstem through fault tolerance
B on-line administration — for higher availability
B OLCP support — for efficient support of hyvinid
environments with concuirent OLTP. DSS. and
batch applications

As users recognize the importance of supportine
either a mixed application environment from a single
database server or more complex queries (the two
predominant characteristics of OLCP . it i~ probable
that the underlving database =erver architectusy will
become the dominant factor in product selection.

Thisis Part 1 of treo analvses ithe seconid wili appear m
the May 1994 ediiion of OTN Specuum Reports

about database server archilectures. Pare Howddi excn-
ine how the necessary features are provided b ihire
major databuse server prodicts. '

B the INFORMIXN OnLine Dynaiiic Sereer

8 Oracle 7

B Svbase's Svstem 10,

Both were writtere by Daced MeGoooran o
Alternative Technologies Bovdder Crooh A @00
Both are drawn fron An Evaduwasn of Three
Datahaze Server Architectures pubiishicd ir: 1445 i
Alternative Technologies,

OTM SPECTRUM FEBRUARY 1994

—_

